Showing posts with label physics. Show all posts
Showing posts with label physics. Show all posts
Albert Einstein. The 10 weirdest physics facts, from relativity to quantum physics
Albert Einstein, who pointed out that the faster you move, the heavier you get Photo: AFP/GETTY
Physics is weird. There is no denying that. Particles that don’t exist except as probabilities; time that changes according to how fast you’re moving; cats that are both alive and dead until you open a box.
We’ve put together a collection of 10 of the strangest facts we can find, with the kind help of cosmologist and writer Marcus Chown, author of We Need To Talk About Kelvin, and an assortment of Twitter users.
The humanities-graduate writer of this piece would like to stress that this is his work, so any glaring factual errors he has included are his own as well. If you spot any, feel free to point them out in the comment box below.
Equally, if you feel we’ve missed any of your favourite physics weirdnesses off the list, do tell us that as well.
If the Sun were made of bananas, it would be just as hot
The Sun is hot, as the more astute of you will have noticed. It is hot because its enormous weight – about a billion billion billion tons – creates vast gravity, putting its core under colossal pressure. Just as a bicycle pump gets warm when you pump it, the pressure increases the temperature. Enormous pressure leads to enormous temperature.
If, instead of hydrogen, you got a billion billion billion tons of bananas and hung it in space, it would create just as much pressure, and therefore just as high a temperature. So it would make very little difference to the heat whether you made the Sun out of hydrogen, or bananas, or patio furniture.
Edit: this might be a little confusing. The heat caused by the internal pressure would be similar to that of our Sun. However, if it's not made of hydrogen, the fusion reaction that keeps it going wouldn't get under way: so a banana Sun would rapidly cool down from its initial heat rather than burning for billions of years. Thanks to people who pointed this out.
All the matter that makes up the human race could fit in a sugar cube
Atoms are 99.9999999999999 per cent empty space. As Tom Stoppard put it: "Make a fist, and if your fist is as big as the nucleus of an atom, then the atom is as big as St Paul's, and if it happens to be a hydrogen atom, then it has a single electron flitting about like a moth in an empty cathedral, now by the dome, now by the altar."
If you forced all the atoms together, removing the space between them, crushing them down so the all those vast empty cathedrals were compressed into the first-sized nuclei, a single teaspoon or sugar cube of the resulting mass would weigh five billion tons; about ten times the weight of all the humans who are currently alive.
Incidentally, that is exactly what has happened in a neutron star, the super-dense mass left over after a certain kind of supernova.
Events in the future can affect what happened in the past
The weirdness of the quantum world is well documented. The double slit experiment, showing that light behaves as both a wave and a particle, is odd enough – particularly when it is shown that observing it makes it one or the other.
But it gets stranger. According to an experiment proposed by the physicist John Wheeler in 1978 and carried out by researchers in 2007, observing a particle now can change what happened to another one – in the past.
According to the double slit experiment, if you observe which of two slits light passes through, you force it to behave like a particle. If you don’t, and observe where it lands on a screen behind the slits, it behaves like a wave.
But if you wait for it to pass through the slit, and then observe which way it came through, it will retroactively force it to have passed through one or the other. In other words, causality is working backwards: the present is affecting the past.
Of course in the lab this only has an effect over indescribably tiny fractions of a second. But Wheeler suggested that light from distant stars that has bent around a gravitational well in between could be observed in the same way: which could mean that observing something now and changing what happened thousands, or even millions, of years in the past.
Almost all of the Universe is missing
There are probably more than 100 billion galaxies in the cosmos. Each of those galaxies has between 10 million and a trillion stars in it. Our sun, a rather small and feeble star (a “yellow dwarf”, indeed), weighs around a billion billion billion tons, and most are much bigger. There is an awful lot of visible matter in the Universe.
But it only accounts for about two per cent of its mass.
We know there is more, because it has gravity. Despite the huge amount of visible matter, it is nowhere near enough to account for the gravitational pull we can see exerted on other galaxies. The other stuff is called “dark matter”, and there seems to be around six times as much as ordinary matter.
To make matters even more confusing, the rest is something else called “dark energy”, which is needed to explain the apparent expansion of the Universe. Nobody knows what dark matter or dark energy is.
Things can travel faster than light; and light doesn’t always travel very fast
The speed of light in a vacuum is a constant: 300,000km a second. However, light does not always travel through a vacuum. In water, for example, photons travel at around three-quarters that speed.
In nuclear reactors, some particles are forced up to very high speeds, often within a fraction of the speed of light. If they are passing through an insulating medium that slows light down, they can actually travel faster than the light around them.
When this happens, they cause a blue glow, known as “Cherenkov radiation ”, which is (sort of) comparable to a sonic boom but with light. This is why nuclear reactors glow in the dark.
Incidentally, the slowest light has ever been recorded travelling was 17 meters per second – about 38 miles an hour – through rubidium cooled to almost absolute zero, when it forms a strange state of matter called a Bose-Einstein condensate.
Light has also been brought to a complete stop in the same fashion, but since that wasn't moving at all, we didn't feel we could describe that as "the slowest it has been recorded travelling".
There are an infinite number of mes writing this, and an infinite number of yous reading it
According to the current standard model of cosmology, the observable universe – containing all the billions of galaxies and trillions upon trillions of stars mentioned above – is just one of an infinite number of universes existing side-by-side, like soap bubbles in a foam.
Because they are infinite, every possible history must have played out. But more than that, the number of possible histories is finite, because there have been a finite number of events with a finite number of outcomes. The number is huge, but it is finite. So this exact event, where this author writes these words and you read them, must have happened an infinite number of times.
Even more amazingly, we can work out how far away our nearest doppelganger is. It is, to put it mildly, a large distance: 10 to the power of 10 to the power of 28 meters. That number, in case you were wondering, is one followed by 10 billion billion billion zeroes
Black holes aren’t black
They’re very dark, sure, but they aren’t black. They glow, slightly, giving off light across the whole spectrum, including visible light.
This radiation is called “Hawking radiation”, after the former Lucasian Professor of Mathematics at Cambridge University Stephen Hawking, who first proposed its existence. Because they are constantly giving this off, and therefore losing mass, black holes will eventually evaporate altogether if they don’t have another source of mass to sustain them; for example interstellar gas or light.
Smaller black holes are expected to emit radiation faster compared to their mass than larger ones, so if – as some theories predict – the Large Hadron Collider creates minuscule holes through particle collisions, they will evaporate almost immediately. Scientists would then be able to observe their decay through the radiation.
The fundamental description of the universe does not account for a past, present or future
According to the special theory of relativity, there is no such thing as a present, or a future, or a past. Time frames are relative: I have one, you have one, the third planet of Gliese 581 has one. Ours are similar because we are moving at similar speeds.
If we were moving at very different speeds, we would find that one of us aged quicker than the other. Similarly, if one of us was closer than the other to a major gravity well like the Earth, we would age slower than someone who wasn’t.
GPS satellites, of course, are both moving quickly and at significant distances from Earth. So their internal clocks show a different time to the receivers on the ground. A lot of computing power has to go into making your sat-nav work around the theory of special relativity.
A particle here can affect one on the other side of the universe, instantaneously
When an electron meets its antimatter twin, a positron, the two are annihilated in a tiny flash of energy. Two photons fly away from the blast.
Subatomic particles like photons and quarks have a quality known as “spin”. It’s not that they’re really spinning – it’s not clear that would even mean anything at that level – but they behave as if they do. When two are created simultaneously the direction of their spin has to cancel each other out: one doing the opposite of the other.
Due to the unpredictability of quantum behaviour, it is impossible to say in advance which will go “anticlockwise” and the other “clockwise”. More than that, until the spin of one is observed, they are both doing both.
It gets weirder, however. When you do observe one, it will suddenly be going clockwise or anticlockwise. And whichever way it is going, its twin will start spinning the other way, instantly, even if it is on the other side of the universe. This has actually been shown to happen in experiment (albeit on the other side of a laboratory, not a universe).
The faster you move, the heavier you get
If you run really fast, you gain weight. Not permanently, or it would make a mockery of diet and exercise plans, but momentarily, and only a tiny amount.
Light speed is the speed limit of the universe. So if something is travelling close to the speed of light, and you give it a push, it can’t go very much faster. But you’ve given it extra energy, and that energy has to go somewhere.
Where it goes is mass. According to relativity, mass and energy are equivalent. So the more energy you put in, the greater the mass becomes. This is negligible at human speeds – Usain Bolt is not noticeably heavier when running than when still – but once you reach an appreciable fraction of the speed of light, your mass starts to increase rapidly.

Credit: 
“The most interesting part in our life is to make something

impossibe become possible.” - Paulo Coelho

Kalimat di atas itu jika saya katakan sudah seperti motto hidup saya sendiri, saya belajar banyak dari kalimat di atas. Mungkin terlihat tidak seberapa jika kalian hanya membacanya sekali atau dua kali tapi, cobalah maknai kalimat di atas lebih dalam, jika memungkinkan bacalah kalimat itu dengan hati. Beliau yang menulisnya pun adalah tokoh idola saya, Paulo Coelho, ia seorang filsuf asal brazil yang sudah menginspirasi saya banyak hal tentang kehidupan melalui tulisan-tulisan di dalam bukunya.
Kenapa saya pilih jurusan Pendidikan Fisika? Sampai detik ini saya juga masih belum menmukan jawaban yang valid atas pertanyaan itu, bisa saja saya sebutkan hal ini adalah jalan Tuhan. Namun, saya berusaha mencoba mencari jawaban atas pertanyaan itu, entah melalui hal apapun yang jelas saya masih terus mencari.
Jujur boleh dikata, tak pernah sekalipun saya berkeinginan untuk menekuni bidang sains, apalagi di bidang pendidikan fisika yang kebanyakan orang menafsirkan lulusannya akan jadi guru fisika. Tidak pernah, saya tekankan hal itu sekali lagi. Sejak kecil, saya selalu bercita-cita untuk menjadi sesuatu, seseorang yang memiliki pekerjaan yang identik dengan jalan-jalan keliling dunia. Setelah SMA saya menemukan jawaban atas hal itu, berhubung saya juga menyukai hal-hal yang berbau internasional dan kemampuan saya pun bisa mendukung saya memutuskan untuk menekuni bidang International Relation. Dari situ saya bertekad untuk masuk jurusan Hubungan Internasional, saya pun bercita-cita untuk menjadi seorang Ambassador Indonesia di salah satu negara di luar sana dan hal itu tidak berubah sampai saya dihadapkan pada suatu pilihan.
Singkat cerita, saya di terima di Jurusan Pendidikan Fisika di UPI setelah perjuangan saya yang menurut saya cukup berat namun, hal itu tidak menjadi beban bagi saya yang punya prinsip 'Hidup itu di asikin aja, jangan dibikin pusing. Nyantai.' Kalau ditanya sekali lagi kenapa saya pilih fisika, mungkin sekarang saya sudah bisa menjawabnya meskipun jawaban saya terlihat kekanakan dan kasarnya bukanlah suatu jawaban. Dari dulu, saya paling tidak mnguasai pelajaran fisika, tidak jarang nilai tes saya berada di bawah rata-rata tapi, saya menikmati dunia fisika ini sendiri.Obsesi saya dalam bidang fisika adalah untuk menciptakan mesin waktu dan pintu kemana saja seperti di kartun Doraemon. Entah mengapa, saya menemukan suatu kenikmatan sendiri saat saya memahami satu per satu masalah yang ditawarkannya. Seperti tertantang, saya pun menekadkan diri untuk menggeluti bidang ini meski banyak orang bilang saya tidak cocok untuk menekuni hal berbau fisika ini. Seperti kalimat pembuka di atas, hal yang paling menarik itu untuk membuat sesuatu yang tidak mungkin menjadi mungkin.
Kenapa pendidikan? Saya juga masih bingung, karena saya ini tidak berminat untuk jadi guru. Jawaban yang bukan sebuah jawaban lagi dari saya itu semacam, 'masuk UPI kalo ga jurusan pendidikan kurang greget rasanya’ jadi ya saya nikmati dulu saja. Lalu, mau jadi apa saya di masa depan kalau bukan jadi guru? banyak. Lulusan pendidikan bukan berarti dia harus menjadi guru, menjadi pendidik tak hanya berarti menjadi guru, yang saya inginkan saya menjadi seorang pendidik dimanapun saya berada. Mendidik yang saya maksud pun bukan berarti mengajar jujur, saya tidak menyukai kata-kata 'mengajarkan seseorang’, kita ini sama-sama manusia, siapa kita untuk saling mengajari? Saa lbih suka kata-kata berbagi, dalam hidup ini kita saling berbagi untuk menambah pengetahuan dan pengalaman satu sama lain.
Kelak di masa depan saya, saya tidak terlalu berminat melanjutkan studi saya di bidang fisika, saya ingin kembali ke cita-cita awal saya, International Relation. Kemudian, mau dikemanakan ilmu-ilmu yang saya dapatkan di fisika ini? Hal ini akan saya jawab dengan sebuah pertanyaan lagi, apa salahnya menjadi seorang ambassador yang juga ahli fisika? Banyak orang-orang hebat di luar sana yang hidup tidak sesuai dengan bidang yang ia tekuni. Di jauh hari nanti, di masa yang akan datang nanti, saya sangat ingin menjadi seorang penulis, travelling keliling dunia sambil melakukan penelitian sendiri entah itu di bidang fisika atau apapun. Yang jelas saya ingin menciptakan sesuatu yang baru untuk dunia yang bisa membawa dunia ini jauh lebih baik dan saya menjadi salah satu alasannya. Kenapa saya terkesan bermimpi terlalu jauh? Satu hal lagi yang saya ingin saya bagi adalah perkataan dari seorang bernama Ashley Smith, 'Life is full of beauty. Notice it. Notice the bumble bee, the small chil, and the smiling faces. Smell the rain and feel the wind. Live your life to the fullest potential, and fight for your dreams.’
Semua hal yang saya ungkapkan di atas tentu saja hanya keinginan saya semata, mungkin sesuatu saat keinginan saya akan berubah atau Tuhan berkehendak lain. Satu hal yang pasti, saya menikmati berada di jurusan fisika ini, saya mendapatkan banyak hal tentang hidup dari fisika, meskipun saya masih baru di bidang ini, hati saya tersenyum ketika menekuninya. Meski banyak hal-hal yang kadang melemahkan tekad saya, saya percaya dengan keyakinan dan keinginan saya sendiri dan saya akan kembali bangun. Jadi apapun saya di masa depan, hal itu adalah salah satu bagian dari keinginan saya karena saya yakin, semua hal yang saya miliki sekarang pun berasal dari ketidak adaan. Oleh sebab itu, saya tidak ingin menghancurkan apa yang saya miliki dengan apa yang belum saya miliki karena apa yang belum saya miliki pun pada waktunya hanyalah sesuatu yang saya harapkan.
“You see things, and you say, ‘WHY?’ But I dream things that never were and I say ‘WHY NOT?’”
Selamat Sore!

Selamat datang di web blog saya, nama saya Anti Haryanti seoarang mahasiswi jurusan Pendidikan Fisika angkatan 2014 di Universitas Pendidikan Indonesia.

Sebagai postingan pembuka, saya ingin menyisipkan sebuah powerpoint mengenai hukum Archimedes hasil karya saya dan seorang teman sebagai salah satu tugas Media Pembelajaran Fisika.

Hukum Archimedes

Untuk melengkapi penjelasan mengenai Hukum Archimedes tersebut, berikut saya sertakan sebuah video yang menghadirkan sejarah bagaimana Archimedes menemukan hukum tersebut.

The Real Story of EUREKA!

Semoga Bermanfaat :)